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TF!CHNI€AL PAPER 

MECHANICS OF LIQUID  HELIUM IN A PARTIALLY  FILLED'  ROTATING DEWAR 
1N LOW GRAVITY - WITH APPLICATION  TO GRAVITY PROBE-B 

INTRODUCTION 

The Gravity Probe-B  (GP-B) spacecraft (Fig. 1)  is designed to  test  the Equivalence Principle 
through long-term (1 year) monitoring  of  forces  on  a  set  of  gyros  in free-fall around  the Earth. 
Extraneous  forces  on  these  gyros  must be kept  at very low  levels, corresponding to  accelerations  of ' 

g or less. This will require  a drag-free (to 10-1  g) control system, which uses a  proof mass 
similar to  the  experiment  gyros as its sensing element.  In  addition, the measurement system for moni- 
toring  these low force levels will require cooling to below superconducting  transition  temperatures. 
The approaches to  both cooling and  control involve the use of liquid helium. The boil-off from  the 
liquid helium dewar will  be  used  as a  propellant to maintain the drag-free operation of the spacecraft. 
The requirement for an  operational  lifetime  approaching  one  year means that a large quantity of liquid 
helium must be used, and that  it will be gradually depleted over the  experiment  lifetime.  This varying 
amount of liquid helium  gives rise to  the possibility of several problems  which can degrade the GP-B 
experiment. Most of  these  potential  problems  are due  to  asymmetry  in  the  static liquid helium dis- 
tribution  or  to waves in  the  free  surface which  will  be present in  the partially-filled dewar. Before 
discussing these  problems  in  detail, however, it must be determined  whether classicai fluid mechanics 
applies to  the analyses. This  determination is necessary because of  the  variety of unusual  effects 
observed in liquid helium at low  temperatures. 

FLUID MECHANICS  OF LIQUID  HELIUM 

Helium exists in  nature as a  mixture  of  two  isotopes, He 4 and He3. The relative abundance of 
the He3  is only  about  one  part  in  lo6, however [ 11. Helium can  then  for  most  purposes be considered 
to consist of He4 only. This isotope,  when in a liquid state, has two phases called He1 and HeII. 
Figure 2 [2] is the low temperature  phase diagram for He4 (helium).  There is a phase transition line, 
called the A-line, which separates the liquid He1 and  liquid HeII phases. The  terminus of this line on  the 
gas-liquid line is  called the A-point. This  denotes  the  temperature  at which the HeI-He11 transition 
occurs at saturated vapor pressure conditions. This temperature  is 2.172OK. 

Liquid He1  is found to behave normally. That is, experiments on liquid He1 exhibit  properties 
and  phenomena which are  common to viscous fluids. The  theory which describes  this behavior is 
classical fluid mechanics. Liquid HeII (i.e., liquid helium  below  2.172'K) is  found  experimentally to  
exhibit behavior which cannot be explained classically. Some of the  properties observed are: 

1)  The  fountain  effect. This  effect is the flow of liquid helium through capillaries (or  through 
pores) from  colder to hotter regions. 
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2) The mechano-caloric effect. This is the inverse of the  fountain effect. Here, when liquid 
helium flows through  porous material from  one reservoir to another,  the reservoir which is losing 
material experiences a rise in  temperature. 

3) Ability to flow through narrow regions such as slits and capillaries without sustaining a drop 
in pressure. This  effect disappears above some critical opening size and  some  critical velocity. The 
opening size and velocity critical values are  dependent on each other. 

4) Related to this  last  effect, in experiments involving the  rotation of liquid helium in 
geometries below critical size and at subcritical velocities, the liquid helium is seen to only partially 
contribute to  the moment  of  inertia  of  the  container. At the X-point, all the liquid helium participates 
in  the  rotation,  but  at lower temperatures, the measured moment  of  inertia  of  the  container and liquid 
helium decreases as a  function of temperature.  Interpretation of these  results requires a two-fluid model 
of liquid helium involving a  normal viscous component and a superfluid component. 

For  the GP-B spacecraft liquid helium management problem, the geometries are so large that  the 
critical values will be exceeded. The liquid helium is treated,  then, as a  normal viscous fluid (with  a 
very low viscosity, on  the  order  of  15 micropoise). This has been experimentally verified for large 
containers  by Mason, et al. [31. The laws and  methods of  classical fluid mechanics will therefore  apply 
here. 

GP-B EXPERIMENT  CONFIGURATION 

The planned configuration  for GP-B is shown in Figure 1. The region of the spacecraft dewar 
containing the liquid helium is nearly an annular volume between concentric cylinders. In  discussing 
liquid helium configuration  and  dynamics that is the model which will be used  (Fig. 3). The helium 
liquid and gas  will be assumed to occupy the annular region of  length 294 cm, outer radius 54 cm, and 
inner  radius 18 cm. 
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Figure 3. GP-B model system. 
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LIQUID  HELIUM  CONFIGURATION 

The requirement that accelerations experienced by  the  proof mass be kept  at  the g level 
or lower means that  the liquid helium used for cooling and  propulsion  can be a  source of problems for 
the GP-B system. The  proof mass responds to external  forces as the sensing portion of the drag com- 
pensation system.  When the proof mass experiences external forces, the gaseous helium propulsion 
system  responds  with  thrusts which will null net forces to  the 10-l' g level or lower. If the forces on 
the  proof mass are due  to spacecraft drag, then  the desired effect is achieved. If the forces are from 
other sources such as' gravitation, then  the effects  of accelerating the spacecraft can still null  net forces 
on the proof mass, but  not  on  the experimental gyros since the  effects  of  the gravitational forces will 
vary over the spacecraft. Also the effect  of accelerating the reference frame (the spacecraft) to com- 
pensate for a  force  internal to  the frame will result in orbital changes for  the  spacecraft. 

In order for  the GP-B drag compensation system to  function  properly,  internal forces must be 
kept below the g design requirement. 

Gravitational forces  can  perturb the proof mass if there  are  distributions  of liquid helium which 
are  not  both axially symmetric and longitudinally  symmetric about a  plane  containing the  center of 
mass and  perpendicular to  the  rotation axis. Liquid helium distributions lacking these  symmetries will 
result in gravitational effects on  the  proof mass in two  different ways. First,  the unsymmetric liquid 
helium distribution will  have a  mutual  attraction  with  the  proof mass. If we consider worst case  mass 
distributions, we can establish upper  bounds on these gravitational attractions.  For  the dewar half full, 
and  with all the liquid helium at  one end,  the gravitational acceleration  produced at  the  proof mass is 
of the  order of g or  the dewar half full, with  the liquid helium on one side, the resulting accelera- 
tion level at  the proof mass  is about lom8 g (see Appendix A). 

The second problem  introduced  by  unsymmetric liquid helium mass distributions is the gravity 
gradient  effect.  Distributions of liquid helium which lack the proper  symmetry (as described above) 
will cause the  center of mass of  the spacecraft to shift away from  the  center of the proof mass. The 
path of the proof mass in orbit will then be slightly different  than that followed by the spacecraft 
center of  mass. The  force  on the  proof mass resulting from this nonfree-fall trajectory can be computed 
by expanding  the expression for  the Earth's gravitational attraction  about  the  spacecraft  center of  mass. 
After doing this, we find that  the magnitude of accelerations due to this  effect at  the proof mass can be 
of the  order  of  g  or  greater  for worst case mass distributions (see Appendix B). 

We have established that unsymmetric  distributions  of liquid helium can result in acceleration 
levels at  the proof mass which can  be more  than two orders of magnitude above experiment design 
requirements. Whether or  not these distributions can  arise depends on  the balance of forces acting on 
the liquid helium. Forces which must be considered are: 

1) Spacecraft drag 

2) Spacecraft propulsion 

3)  Gravity gradient forces 

4) Gravitational forces between the liquid helium and the spacecraft 
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5) Centrifugal forces due to spacecraft  rotation 

6 )  Surface tension  forces in  the liquid helium. 

For a  spacecraft  operating as designed, spacecraft drag will be balanced by the helium propulsion 
system. There should be no  net accelerations (above the 10-l’ g level) on the liquid helium from  these 
sources. In Appendix C, the expected magnitudes of gravitational, gravity gradient, centrifugal, and 
surface tension forces on  the liquid helium are compared. Gravity  and gravity gradient forces are shown 
to be at least  one order  of magnitude smaller than  the smallest expected centrifugal forces. For 
purposes of discussing the liquid helium configuration  then,  spacecraft drag and  propulsion  and gravity 
and gravity gradient forces can be neglected. To a close approximation the liquid helium configuration 
will be the result  of  a balance between centrifugal forces  and  surface  tension for  the  boundary condi- 
tions imposed by dewar shape. 

When the GP-B spacecraft is deployed it will not be spinning. In  the early stages of  the experi- 
ment,  a spin rate of up  to  about 0.1 rad/sec will be imposed for  instrument  calibration.  After calibra- 
tion,  the rotation  rate will be reduced to its operational value of approximately 0.01 rad/sec. Changes 
in rotation  rate of the spacecraft  are not felt  immediately  in the liquid helium. Angular momentum 
must be diffused and convected into  the liquid helium from the side and ends of  the dewar. Until the 
helium is in solid body  rotation  with  the  spacecraft, pressure distributions due to centrifugal forces will 
deviate from  hydrostatic and will  be unpredictable.  Appendix D deals with  this  problem. It is shown 
there that spin-up times are very short (a day) compared to experiment lifetime. 

Knowing that equilibrium configurations of the liquid helium are governed by the centrifugal 
forcesurface tension balance, and that spin-up can be accomplished fairly rapidly,  permits analyses 
which can make  some  predictions  about  expected configurations. These analyses use two approaches, 
energy analysis and pressure balance. 

Energy analyses are used to predict  whether,  for  a given set of conditions,  a simply connected 
(“spherical”) bubble  of gaseous helium or  a  multiply  connected  (“toroidal”)  bubble is expected. 
Appendices E and F deal with  this  approach. Results show that for the operational  rotation  rate, and 
for high fdl  factors (small bubble volumes), conditions  are marginal for forming the desired toroidal 
bubble. That is, an unsymmetric liquid helium distribution could result from these conditions. 

Pressure balance calculations have been performed in order to  obtain equilibrium liquid helium 
distributions as a  function of rotation  rate  and fill factor.  Appendix  G uses pressure balance to obtain 
gaseous helium bubble shapes in  a  longitudinal  section  containing the  rotation axis. Here curvature is 
considered in the r-z plane. Appendix  H assumes that an axisymmetric toroidal  bubble exists, and 
computes equilibrium configurations as a  function  of  rotation  rate.  In  the calculations in  Appendix 
H, the helium gas-liquid interface is assumed to have a  finite radius of curvature  only in the r-8 plane 
(i.e., in a plane perpendicular to  the  rotation axis). Results from  these pressure balance computations 
confirm that axisymmetric liquid helium configurations  are not  expected  for high fill factors at  the 
operational rotation  rate of 0.01 rad/sec. 

CONCLUSIONS 

Liquid helium mass distributions  in the GP-B dewar  are possible which are capable of producing 
accelerations on  the  proof mass on  the  order  of g. Since the  proof mass is displaced from the 
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experiment masses, these  accelerations cannot be compensated  by  the drag-free propulsion  system. Also, the 
response of  the drag-free propulsion  system to these  kinds of internal  forces  could degrade the orbital 
dynamics of  the  spacecraft. It was shown  that  the  configuration of the liquid helium in the  dewar  is 
primarily  a  function of centrifugal  forces  and  surface  tension.  Energy  and  force balance analyses 
indicate that  at  the planned  operational  rotation  rate, the desired axisymmetric liquid helium configura- 
tion  is  improbable for high fill factors  and marginal for lower fill factors.  Approaches to achieving the 
symmetric  distribution will be  discussed  in a  separate  report. 
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'APPENDIX A 

WORST  CASE  MASS DISTRIBUTIONS  AND  THEIR  EFFECTS 

Worst  Case Longitudinal  Displacement of GP-B  Center of Mass 

The worst case GP-B center of  mass displacement due to an asymmetrical  configuration  of the 
liquid helium will exist if the dewar is half full and all the liquid helium is at  one end (Fig.  A-1). 

I GASEOUS HELIUM I LIQUID  HELIUM I 
~~ ~~ 

Figure A-1.  Worst  case - axial. 

Assuming a total  dry mass M1 of  the dewar to be 1921.8 kg, the mass M2 of liquid helium 
(for  completely filled dewar) to be 320.5 kg, and the dewar length to be  294 cm, the  center of  mass 
displacement along the axis for  this worst case  is  given by: 

- (1 60.25) (73.5) - "- 
1921.8 + 160.25 

cm 

= 5.66 cm . 

Worst  Case Radial  Displacement of GP-B  Center of Mass 

The worst case  of center of mass displacement in a radial direction  for the GP-B will occur if 
the dewar is  half full and all the liquid helium is at one side (Fig.  A-2). 
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Assuming a  uniform mass density, p,  of liquid helium, the location of the helium center of 
mass will be given by: 

p dr in de (r2 cos 0 )  

rl 

Jr2 dr dB (r) P 

K 
- 

%.m. - = sin 8 I f(r) = 0 
0 

rl 0 

p f r2 dr [K de (r2 sin 6 )  
rl 

for r l  = 18 cm and 1-2 = 53 cm 

= 24.43 cm . 

This value of  the liquid helium center of mass displacement gives a radial displacement of the 
total GP-B center of mass of: 
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- (160.25) (24.43) - c.m. = 1.88 cm . 
1921.8 + 160.25 

Gravitational Attraction Between  the  Proof Mass and the Liquid Helium 

The displacement of the liquid helium center of mass from  the  spacecraft  center  of mass (hence 
from the proof mass center of  mass) results in gravitational attraction  between  the liquid helium and the 
proof mass. This can be expressed as an acceleration at  the proof mass location  due to  the liquid 
helium : 

where M is the liquid helium mass and  r is the distance between the proof mass and liquid helium 
centers  of mass. 

The maximum center of mass displacements for  a half full dewar have been calculated. For  the 
longitudinal case this  results in the following acceleration level: 

GM - (6.67 x (1.60 x lo5) 

r 
a L = - -  2 cm/sec 

(7.35 x 101)2 
2 

= 1.98 x cm/sec2 = 2.02 x g . 

For  the case where the dewar is half full with all the liquid helium at one side 

(6.67 x (1.60 x lo5) 

(2.443 x lo1)* 
aR = cm/sec- 3 

= 1.79 x cm/sec2 = 1.83 x g . 
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APPENDIX B 

GRAVITY  GRADIENT EFFECTS 

The acceleration  due to  the gravitational  attraction of the  Earth  at  a  point on an orbiting space- 
craft  may be expressed as an expansion about  the spacecraft  center of  mass : 

h - R a = - G M -  , g IR12 

where G is the gravitational  constant, M is the mass  of the  Earth, and R is a  vector  from the center of 
the Earth to a  point  on  the  spacecraft. Now let 

- 
R = El + E2 = (Re + h) + k 2  

where R1 is the vector from the  center of the Earth to the  spacecraft  center of  mass, R2 is  the  vector 
from the  spacecraft  center of  mass to the  point in question,  Re is the radius of the  Earth, and h is the 
spacecraft  altitude (Fig. B-1 ). 

- 

/cpB 

CENTER OF THE EARTH 

Figure B-1. Gravity gradient. 
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I I 111 I 

We can then  write: 

or 

= - GM (E1 + R2) [R12 + 2 * -t R2 2 I -3/2 

This can  be expanded in a binomial series. If we wish to  have accuracy to  the third power of 
l/R1, we need to retain only the first two terms  in  the  expansion. We have then: 

Again keeping terms  through 1 /R13, 

L 

12 

..... - -. . ... ., . , .. ,.. 



We observe that  the first  term  is just  the gravitational  acceleration at  the spacecraft  center of 
mass. This  term  is balanced by  the centrifugal  acceleration of the spacecraft. For  a spacecraft  in an 
inertial  flight  mode, the second and third  terms  represent unbalanced accelerations.  The  result will be 
that  a mass at  any  point  away  from  the  spacecraft  center of  mass experiences gravity gradient forces. 
The  component of displacement  perpendicular to  the radius generates forces  directed back toward  the 
center  of mass. The component of displacement along the  radius r l  generates  forces away from  the 
center of  mass. 

For GP-B, then, if there is any  displacement of the spacecraft  center  of mass from  the  proof 
mass center  of mass, gravity gradient  forces will act on the proof mass in  the  manner described above. 
Any  distribution of liquid helium lacking axid symmetry (including symmetry  about  a plane perpen- 
dicular to the axis and  through  the  proof mass)  will  cause these forces. It is useful to make worst 
case estimates of the  magnitude of these  effects. 

If E2 is taken to be a  vector to a  point faed in the GP-B spacecraft,  and  is assumed to lie  in 
the  orbital plane, then the angle between ]Ti1 and R2 can  be represented by wt + 4 where w is the 
orbital angular rate,  t is the time,  and 4 is a faed place  angle.  If we take @ = 0 for the angle at which 
R1  and R2 are aligned, and let  t = 0 at that  point,  then we have: 

A 

R1 - R2 = cos wt . 

The gravity gradient  part of the  acceleration can then be written: 

when R;! is parallel to  E1 : 

where R2 is antiparallel to E1 : 

13 



When E2 is  perpendicular t o   81 ,  i.e., cos u t  = 0, we have: 

Examination of these expressions for gravity gradient  acceleration shows that  it is directed 
toward the  center of mass of the spacecraft  for ?I 1 ?2, and away from the  center of mass for 
parallel to f2, and has maximum magnitudes of 2GMR2/R13. Where: 

G = 6.67 x cm3 gm-'  sec-2 

M = mass  of Earth = 5.98 x gm 

R1 = R e +  h 

Re = radius of Earth = 6.37 x lo8 cm 

h = altitude = 520 km = 5.2 x lo7 cm 

a = gravity gradient  acceleration 

= 2(6.67 x (5.98 x (R2)/(6.89 x 

= 2.44 x Re sec-2 = 2.49 R2 x g 

where R2 must be expressed in cm,  and represents the  amount of center of mass displacement due to 
asymmetries in the helium configuration. 
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APPENDIX C 

FORCES ON LIQUID HEL 

Gravity  Gradient  Accelerat 

.I UM 

ions 

From Appendix By the expression for  the gravity gradient acceleration at a  point  represented  by 
the vector  R2  from the spacecraft  center of mass is given by: 

. 

An estimate of the magnitude of this acceleration was shown to  be: 

a s 2.5 R2 x g , 

where R2 is expressed in centimeters.  For  R2 = 150 cm, 

a s 4 x  10-7g . 

Gravitational  Accelerations 

The gravitational acceleration everywhere inside the GP-B dewar can be determined  in principle 
as : 

where @(a is the gravitational potential: 

Here p(r ) is the mass distribution of the spacecraft. t 

To determine  whether it is necessary to evaluate this integral, we may obtain an estimate of 
++ 
a(r). An upper  bound on  the magnitude of 23 will be given by assuming all the mass of  the spacecraft 
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is concentrated  at  the  center of mass and  computing  the  acceleration  at  a  distance L/2 away, where L is 
the dewar  length. For L = 150  cm,  and M (the  spacecraft mass) to be  1900 kg, we have : 

(6.67 x cm3 gm-' sec-2) (1.9 x lo6 gm) 

= 5.63 x 10- 6 cm/sec 2 

Surface  Tension  Forces 

The pressure difference across any fluid-fluid interface (Fig. C-1) is given by: 

where u is the interfacial  tension measured  as a  force  per unit  length,  and  R1  and R2 are  the principal 
radii of curvature at a  point  on  the  interface. 

Figure C-1. Pressure across 2-fluid interface. 

For liquid helium various values for u have  been reported. A value on  the  upper end of the 
range is 0.53.dynes/cm [ 1 1 .  Other values range downward to  about  0.12  [3]. Using u = 0.53  dynes/ 
cm and  a  characteristic  radius of 18 cm (the  inner  cylinder  radius  for GP-B),  we obtain AP = 0.029 
dynes/cm2. A pressure can be calculated which  would result  from  a  hydrostatic head due  to an acceler- 
ation field of 4 x g (the value derived as an upper  limit  of gravity gradient  effects).  This would  be 
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P = p g  h = (0.145 gm/cm3) (4 x cm/sec2) (54 cm) 

= 0.0031  dynes/cm2 , 

where the radius  of the GP-B dewar provides the  54 cm length scale. 

This value is a  factor of 10 smaller than  the surface tension forces. We can  expect  then  that 
surface  tension will be much  more  important  than gravity gradient  effects  in  determining liquid helium 
configuration. 

Centrifugal  Forces 

Since the GP-B spacecraft will rotate  about  its  longitudinal axis, the liquid helium  in the  dewar 
will experience  centrifugal forces. The  acceleration field due  to this  rotation  is given  by : 

a c = w  2 r , 

where w is the  rotation  rate.  At  the  operational  rotation  rate of about 0.01 rad/seC,  we  have : 

a, = 10-4 r . 

Expressed  in effegravity this  becomes : 

a, s 10-7 r g , 

where r is in  centimeters. 

For  r = 18, a, = 1.8 x g and  for  r = 54, a, = 5.4 x 10- g. These levels are about an 6 

order  of  magnitude higher than  the largest expected  gravitational  effects  and  comparable to surface 
tension  effects. 
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APPENDIX D 

SPIN-UP AND SPIN-DOWN OF THE GP-B 

A fluid in a  container undergoing a  uniform  rotation about  a single axis will ultimately  come 
into equilibrium  with the container  and the container-fluid  system will rotate as a solid body. When 
this  condition is achieved, a  hydrostatic pressure distribution  exists  in the fluid.  The pressure distribu- 
tion  may readily be computed  from  the  centrifugal  force  and is just  a  function  of  distance  from  the 
rotation axis, fluid density,  and  rotation  rate. When the fluid is not  spun-up, that is when it is adjusting 
to a changing angular velocity of the container, the pressure distribution  is very complex.  In  order to 
have an  experimental  condition which is known,  it is preferable for  the  liquid helium in the GP-B 
dewar to be spun-up while the experiment is  being conducted. It is necessary then to  compute 
estimates  of  the time required  for  the liquid helium to adjust to changing angular velocities. This char- 
acteristic  time will  be denoted as the spin-up time. 

The  model  appropriate  for the GP-B dewar is concentric  cylinders with  the liquid helium 
contained in the  annular region between  them (Fig .  0-1). The  problem  then is to get angular  momen- 
tum (vorticity) into  the liquid helium from  the  rotating cylinders. There are two transport processes 
available to carry  this  vorticity  generated at the  container walls  (see W. B. Watkins, R. G.  Hussey,  Spin- 
up  from rest in a cylinder, Physics  of Fluids, Vol. 20, No. 10, Pt. 1 , Oct.  1977).  First,  vorticity gen- 
erated at  the walls  of the  dewar diffuses into the liquid helium. The characteristic  time  for  this process 
is Td N” a2/v, where a is the  radius of the  outer cylinder and v is  the  kinematic viscosity of the liquid 
helium. For a = 53.34 cm and  for v = p/p = dynamic  viscosity/density = (1.3 x 10- 6  poise)/0.1452 
gm/cm3 = 8.95 x lo-’ cm2/sec, we  have a  characteristic  time: 

Td = (53.34 ~ m ) ~ / 8 . 9 5  x 10-5 cm 2 /sec 

= (28.45 x 102)/8.95 x sec 

= 3.18 x 10  sec = 368 days N, 1 year . 7 

Figure Dl. Spin-up model. 
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Spin-up through  diffusion of viscosity from  the walls  is then a very slow process, requiring a  time of the 
order of the experiment  lifetime to occur. The second process  which contributes to spin-up is the con- 
vective transport of vorticity due to centrifugal  pumping  (Eckman pumping) at  the  cylinder end walls. 
Figure D-2 indicates the  nature of this  effect. Liquid in  contact  with  the end wall must  rotate  at  the 
angular rate, w, of the  end wall. Shear stresses in  the viscous liquid entrains  a layer having thickness 
the  order  of 6 = ( v / w ) ~ / ~  (see H. P. Greenspan,  The  Theory  of  Rotating  Fluids, Cambridge Univ. 
Press, 1968, p. 32). Here 6 = (8.95 x cm2/sec)/10-2  rad/sec1/2 = 9.5 x cm, that is, 6 is 
about 1 millimeter. The fluid in this  layer has angular velocity and  therefore is subject to centrifugal 
forces which push it radially outward. The sidewalls turn  the flow. For  a closed cylinder where there 
is  centrifugal  pumping  at each end, toroidal flow  cells develop, extending  from each end to  the midplane 
of the cylinder.  The spin-up time scale due  to this mechanism is given by: 

Tc = L(vw)-lD 

where L is the  cylinder  length. For  L = 294 cm this gives: 

T~ = (294  cm) (8.95 x cm2/sec)  rad/sec)-1/2 

= 3.12 x lo5 sec = 3.61 days . 

\ 
CYLINDER SIDE WALL 

.END WALL 

Figure D-2. End wall effects. 

Since the spin-up time is directly  proportional to  the  length scale  L, a decrease in  this  time may 
be obtained by making L smaller. This could be done by  using baffles which would  be plates parallel 
to the  cylinder  ends.  Then  the  characteristic  length  would be the  baffle spacing.  If this spacing is 
about  L/lO,  then  the  characteristic spin-up time reduces to  about  1/3 day. 

Since T~ << Td, the spin up will be completely  dominated by centrifugal pumping. T~ is short 
enough  that  hydrostatic  conditions should be established quickly  (compared to  total experiment  time). 

Spin-down occurs  in  a  fluid  by the same mechanisms as spin-up.  Therefore,  reductions  in  rota- 
tion  rate  for GP-B will be accomplished through  the end wall pumping  effects, and  will  have the same 
characteristic  time as for  spin-up. 
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APPENDIX  E 

ENERGY  ANALYSIS 

Given a vapor bubble  of specified volume, we  will eventually be concerned  with  its  position  both 
dong  the axis and in the radial direction. However, for  the time being, ignore the bubble’s position 
along the axis and consider only  its radial position. For  the case where the cylinder  is not rotating, the 
bubble might look like Figure El. As long as the bubble was small enough to fit  between the 
cylinders, its  shape would be spherical. (Note  that liquid helium at this  temperature  is  a  perfectly 
wetting liquid thus preventing the bubble  from  attaching  and  forming  a solid-vapor interface.) With zero 
rotation,  the radial position of this vapor bubble would be  arbitrary,  but  with even a slight rotation  the 
bubble would begin to float  toward the  center of the  container as the heavier liquid was forced toward 
the outside (Fig. E-2). 

VAPOR 
LIQUID 

0 
Figure E-1. Bubble in nonrotating case. 

Figure E-2. Bubble with small o. 

When the bubble reaches the inner  cylinder  its final shape  depends on a  combination of factors. 
Those  parameters which will affect the bubble’s shape and bubble size for a given container  include  the 
density difference between the vapor and liquid phases, the vapor pressure, the surface tension of the 
vapor liquid interface, and the  rotation  rate. When the  rotation  rate is small relative to the surface 
tension, the bubble would look  something like Figure E-3. However, as the  rotation  rate increases (or 
the surface tension decreases) the bubble will deform, wrapping itself around the cylinder as in Figure 
E-4. This deformation would continue  with increased rotation  until  the  two ends of the bubble  touch. 
At  that time the bubble would “pop” and reform into a  toroidal  shape (Fig. E-5). 
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Figure E-3. Bubble with o' increasing. 

Figure E-4. Bubble, large w. 

Figure E-5. Axisymmetric bubble. 

It is easy to imagine that if we then slowed the  rotation rate, the vapor would remain in some 
torus-like form,  perhaps even until  the  cylinder  stopped  rotating completely. The significance is that 
for  one  rotation  rate  there may be two very different possible states,  one  axisymmetric  and  one  not. 
Which shape is thermodynamically preferred depends on  the balance between the surface energy and 
the  potential energy due  to  rotation.  The surface energy would be minimized by a spherical bubble 
off to one side while the  potential energy due  to  rotation would be minimized by a  bubble wrapped 
around  the  inner cylinder. Unfortunately, it  is extremely  difficult to calculate the actual shapes of these 
two states and  to subsequently  compare  their energy. Instead we  have chosen to  simplify the problem 
by comparing the energy difference  between the  undistorted shapes of a  sphere and a torus. The 
question  then is what is the energy required to go from  a  torus to a  sphere (Fig. E-6). 
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Figure &6. Energy  model. 

The change in energy in going from  a  torus to a  sphere  of the same  volume is the sum of  the 
energy released by  the decrease in  surface area plus  the energy required to transport  the liquid helium 
through  the acceleration field to its new position.  (The energy required to  relocate  the  vapor is 
neglected.) The  first  part  of  this sum is easily calculated  and is simply u(A,-AT) where u is the surface 
tension, As is the surface  area of the sphere,  and AT is the surface  area of the  torus.  The final result 
is that  the difference  in energy between  a  torus  and  a  sphere  is: 

2 AETOTAL= U(AT - As) + w p w [(47rb3(R1 + b)  [Rl + 8 7 4)- (E 14 a5 + R1 - 4 a4)] 
3 

(Torus +. Sphere) 

where 

u = surface tension 

AT = area of the  torus 

A = surface area of the sphere 

w = rotation  rate (radians/sec) 

p = density (g/cm 3 ) 

b = small radius  of the  torus 

R1 = radius of the  inner  cylinder 

a = radius of the sphere . 

If AE  is positive for a given bubble volume and w then  the  bubble  would  rather be a  sphere. If E 
is negative then a  torus is the preferred  configuration. A value of AE = 0 implies that  the bubble is 
at a crossover point where it would just as soon be a  torus as a  sphere. 

22 



In  order  to get  a feel for  what  shape might  be  expected,  some  examples have  been  worked for 
helium in  the dewar with  the dimensions  shown in Figure 5 7 .  

Figure L 7 .  Energy model with GP-B parameters. 

Using the values of u = 0.37 erg , p = 0.145  g/cm3, R1 = 17.8  cm,  and w = 0.01  rad/sec,  a 
bubble  with  a volume of 24 liters (1/100 of the available volume of the  actual  dewar) would rather be 
spherical (AE = 975 dynes/cm). However, an increase to a  rotation  above  0.38  rad/sec would  mean that 
the  bubble would prefer to be  a  torus (AE < 0). Similarly, a  vapor  bubble  with  a volume of 5 10 liters 
at a rotational speed of 0.01  rad/sec would rather be toroidal, but if  slowed down to below W = 0.0089 
would prefer to  be a  sphere  except that such  a large sphere could not  fit  undistorted in the space 
between the  inner  and  outer cylinder. 

The conclusion of  this energy analysis is that near  a rotation speed of 0.01  rad/sec (the pro- 
jected  rotation  rate  for  the  actual  experiment)  it is questionable  what  form the bubble will take. 
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APPENDIX F 

SURFACE  ENERGY  AND  ROTATIONAL  POTENTIAL  ENERGY 

A slightly different energy argument from that of  Appendix G is  presented here. Two possible 
configurations of the liquid helium will be analyzed with  respect to surface energy and  rotational  poten- 
tial energy. These configurations are an axisymmetric LHe distribution (Fig. F-1 ) and  a simply con- 
nected  bubble (Fig. F-2) of helium gas. The simply connected  bubble  may or may not extend the 
length of the dewar. 

@ LlOUlD 

'1 - 
r2 - 
'3 = 

INNER CYLINDER RADIUS 

BUBBLE RADIUS 

OUTER CYLINDER RADIUS 

Figure F-1 . Axisymmetric  bubble. 

LlOUlD 

Figure  F-2. Simply connected  bubble. 

The  configuration  with  the  lowest possible rotational  potential energy is just  that shown in 
Figure F-1. In this  configuration, all the potential energy has been converted to rotational  kinetic 
energy. Ignoring the  contribution of the helium gas (which is negligible due to  its very  low density  of 
the  order of lo-' times the LHe density), the rotational  kinetic energy of this  configuration is 

I 
4 

= - n ~ p w  2 ( r34- r2  4 , 

24 



where Q is the length  of the dewar. To obtain  the  rotational  potential energy of any configuration, we 
must find the difference  between the  rotational  kinetic energy of that  state and ER. 

The  total energy of a given configuration will be the sum of  its  rotational  potential energy and 
its surface energy. Surface energy is just : 

where A is the total interfacial  area. The  total energy is then: 

= UA + ER - ER’ , 

where ER’ is the  rotational  kinetic energy of the given state. 

For an axisymmetric  bubble, the surface energy E,‘ is: 

EsC = u 27~ 1-2 !2 

The  total energy for  this  configuration, ETC is then: 

ETC = EsC + ER - ER’ . 

Here, however, ER = ER’ so that  for  the axisymmetric (cylindrical) configuration: 

 ET^ = 2n r2 Q u . 

For  the simply connected  bubble (which will be labeled “spherical”) shown in Figure F-2, the 
rotational  kinetic energy is: 

A8 Q 
E R S = I  f r 3 1  T p r  2 o 2 d V +  {2nLQf i p r 2 0 2 d V  . 

0 rl  A8 rl 
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Evaluating this integral gives: 

1 
= p w2 (1-3~ - r14) [ 2 d  - AOh] ' 

where h is  the length of  the gas bubble  and AO is its angular extent. 

The  rotational  potential energy of  this  configuration is then: 

1 
4 

= - r Q p w 2 (r34 - r2 4 - E ~ S  

1 
4 

= - n a p  w 2 ( r14- r2  4 1  ) + i A O  h p o  2 ( r34 - r l  4 ) . 

The surface energy of this configuration is : 

1 
2 

2(r2 - r l )  h + - a A0 (r32 - r12)] 9 

where 

a = 1  for  bubble  stuck to end 

a = 2 for  bubble away from  end . 

The  total energy for  the simply connected bubble is: 

1  1 
2 4 

2(r2 - r l )  h + - a A0 (r32 - rl24- - 7~ Q p w 2 ( 1 - 2 ~  - r l  4 1  ) + 8 A0 h p w 2 4  (1-3 - r l  4 ). 

The criterion  for having an axisymmetric cylindrical bubble is that  the energy for  that  state be lower 
than that  for alternate  states: 

ETC < ETS 
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or 

ETS -  ET^ > 0 . 

This condition is: 

1 
2 

2(r2 - r l )  h + - a A8 (r32 - r l  2 ) - 2n 1-2 Q - - n Q p w 2 ( 1 - 2 ~  - r l  4 ) I: 
1 
8 

+ - A 8  h p  w2 ( 1 - 3 ~ - r , ~ ) > O  . 

This is subject to  the condition that  the volume of the gas bubble is constant.  That is: 

v c  = v s  

or 
1 

n Q (r22 - r12) = (At9 h) (r32 - r12) 

so that: 

Assume that h is some fraction of 2: 

h = b Q  where O < b < l  

then 

Rewriting the energy condition we  have: 
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u [ 2 ( r 2 - r l ) h +  (i) ~ ( r 2 ~ - r 1 ~ ) - 2 n r 2 ! 2  2 ( r24- r l  4 ) 

or 

1 b  ble Then, F(r2, a, b, w )  > 0 defines the region in parameter  space  where an axisymmetric bu 
is energetically preferred. Figures F-3 and F-4 show these regions for  the following parameters: 

r l  = 18 cm 

r2 = variable (set for each calculation) 

r3 = 54 cm 

Q = 294 cm 

b = a constant between 0 and 1 

a =  1 o r 2  

w = independent variable 

p = 0.145 gm/cm 3 

u = 0.53  dynesfcm . 
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Figure F-3. Energy condition,  bubble at  end of dewar. 

70 - 

60 - 

z 
0 
W E 40- 

ce t 
0 30- 
W 

50 - 

* 10- 

-10 - ROTATION  RATE (RAD/SEC) 

-30 L ENERGY  BALANCE  CRITERION FOR VARIOUS  VALUES OF ULLAGE 
VOLUME,  V (BUBBLE AWAY FROM END WALLS) 

Figure F-4. Energy condition, bubble away from end of dewar. 
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APPENDIX G 

PLOTTING  THE BUBBLE  SHAPE 

The curvature of a  bubble  and  therefore its  shape is dictated by  its surface  tension  and the 
pressure difference  between the inside of  the bubble  and the outside.  The relevant equation is: 

where AP is the pressure difference between the inside and  outside of the bubble, u is the surface 
tension and K1 and K2 are the  orthogonal curvatures (Fig. G-1). Consider a  nonrotating  container of 
liquid helium containing a  bubble of volume V (Fig. G-2). The pressure of the vapor inside the bubble 
is a  function of the temperature. As heat flows into  the  container  and vaporizes the liquid helium the 
overall temperature is held constant by means of evaporation  through  a  porous plug. Since the  tem- 
perature is fixed the vapor pressure inside the bubble likewise remains at a fixed value. The pressure 
in the liquid outside  the  bubble is then given by : 

For a sphere K1 f K2 = 2/R where R is the radius of the sphere. Therefore  for  a  sphere : 

'liquid - 'vapor 
- - 2u/R 

Since the vapor pressure is a  constant,  the pressure of the liquid must increase over the course of the 
experiment as  helium is vaporized and vented overboard (Fig. G-3). 

Figure G-1. Pressure drop across bubble wall. 

Figure G2 .  Bubble in closed container. 
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Figure G 3 .  Pressure change with  bubble growth. 

For a  rotating system the problem becomes more  complex but  the equation Pliq - Pvap - - 

- u (K1 * K2) still holds. For  the configuration given in Figure G-2 the Navier Stokes  equations  in 
cylindrical coordinates  can be applied to get an expression for  the pressure in the liquid: 

+""" 

a2vr a 2  vr r2 r2 ""I 
For  the case where the fluid rotates as a solid body  around  the axis this equation reduces to : 

v*2 - ap 
-P"" ' r ar 

where p is the  density, Ve the velocity in the  theta  direction, P the pressure, and r the radial coordi- 
nate.  Substituting o r  = Ve (where o = radians/sec) and  integrating gives: 

p w L  rL 
Pressure liquid = + Constant . 

2 

Substituting  this  expressioninto Pliq - Pvap = - u (K1 k K2) results in: 

+ Pvapor 
Curvature (K1 * K2) = - 

20 U 
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For  a “two-dimensional  bubble”  K2 = 0. The  resulting  bubble  can be plotted using a  computer 
plotting program. An example of such a bubble  plot is  given in  Figure G-4. The figure gives an 
example  for  two  different values  of the  constant  in the above equation.  The  curvature  for  these  two- 
dimensional bubbles with K2 set  equal to zero is sharper  than  would be the curvature  of  the cross- 
section of an actual  bubble. 

For  the  three-dimensional  bubble which is axisymmetric  (toroidal  in  shape) the value of l / r  
can  be substituted  for K a ain simplifying the problem where it can be easily graphed by computer. 
(This is an approximation  for  K2 which  will be exact at  the inner  cylinder  and at  the  outer extremity of 
the bubble.  The  approximation  should  only  affect  the  detailed  shape  of  the  bubble  ends, not  its size.) 
Figure G 5  is the side view  of a  torus  drawn  by the  computer program. In the figure, S is the surface 
tension; w is the  rotation  rate;  the  Int Press (8000) is the  pressure of the helium vapor;  and Ext Press 
is the pressure of the  liquid helium. The bubble  shown in Figure G 5  would grow  as the helium was 
depleted and at  some point  would  look  like Figure G 6 .  The axial position of the bubble  in Figure 
G 6  is for  the  most  part  arbitrary.  The  center  of gravity of  such  a  bubble is unpredictable  and 
therefore undesirable. One possible remedy to this problem would be to step  up  the  rotation  rate. 
A higher rotation  rate is more likely to produce  an  axisymmetric  torus  and will  also stretch  the  bubble 
out such that  at  a certain  volume the bubble  would be positioned  by the end walls. Figure G 7  shows 
the  growth of a  bubble at  a higher rotation.  The  bubble  shown  in  Figure G 7  would touch  both  end 
walls when its volume  reached  approximately  one-fourth of the  total volume. 

2 .g 

5- 3 7  DYNESICM W - .O IRADISEC. D - .146 glcm 

Figure G-4. Bubble shape,  re  section. 
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Figure G 5 .  Bubble shape, rz section. 

R U N  #1 S = .37 DYNEWcm W = .01 RAD/SEC. D = .145 g/cm INT PRESS = 8OOO (DYNEWUTI~). 

Figure G-6. Bubble shape, o = 0.01  rad/sec. 

Figure G7. Bubble shape, w = 0.05 rad/sec. 
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APPENDIX H 

CYLINDRICAL BUBBLE  PRESSURE  BALANCE 

The pressure balance at a cylindrical interface,  concentric about  the  rotational axis of the liquid, 
for  the system shown in Figure H-1 is given by: 

or 

20 = (p2  - p 1 )  u2 R3 - (p2  - p1) u2 r12 R 

R3 - r12 R - 2 0  
2 

= o  . 
(P2 - PI)  

p2 

Figure H-1 . Cylindrical bubble model. 

This  can  be  solved numerically to obtain R as a function of angular rate w. R  will  be the radius 
of a cylindrical bubble which is in equilibrium at a given rotation rate. Results are shown in Figure H-2 
for values of surface tension of 0.35 and 0.53 dynes/cm. 

Another way to present the pressure calculations is to compute pressure drop across an  inter- 
face as a function of radius of curvature of a toroidal  bubble and to compare  this to the pressure due 
to centrifugal forces at  the same radius. For surface tension calculations are: 

For centrifugal forces, calculations are: 
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where p2 = density  of liquid helium and p1 = density of gaseous helium. These calculations are  plotted 
in Figures H-3 through H-5. 

It is necessary to determine  how full the liquid helium dewar can be a t  a given rotation  rate  and 
still have an  axisymmetric bubble. This can be done  by  first fmding the bubble radius consistent  with 
equilibrium (Fig. H-2) and then determining  what fill factor this represents (fill factor is 1-c, where c  is 
the ullage fraction). Figure H-6 presents plots of ullage fraction versus bubble radius. Curve 1 of Figure 
H-6 represents the GP-B system as designed. Curve 2 illustrates how an  axisymmetric  bubble  could be 
maintained for larger fill factors  if  a larger diameter dewar is used. Figure H-7 shows the ullage fraction 
which can be maintained at a given rotation  rate assuming cylindrical bubbles. 

\ V - .53 DYNEWCM 

ROTATION  RATE  (RAD/SEC) 

Figure H-2. Equilibrium cylindrical bubble radius versus rotation  rate. 
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Figure H-3. Pressure versus radius of curvature  for cylindrical bubble. 
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Figure H-4. Pressure versus radius of curvature  for cylindrical bubble. 
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Figure H-5. Pressure versus radius of curvature for cylindrical bubble. 
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Figure €3-6. Ullage fraction versus bubble radius for cylindrical  bubble. 

37 



ULLAGE  FRACTION VS ROTATION  RATE+ 

V., 

*ROTATION  RATE  REQUIRED SO THAT CENTRIFUGAL FORCES ARE 
EQUAL TO SURFACE TENSION FORCES FOR AN AXISYMMETRIC 

0.6 - CYLINDRICAL BUBBLE 

a - .53 DYNESICM. 

0.5 - 

z 
0 

0 
0.4 - 

la. 
Y 
0 
5 0.3 - 
2 

d 

-I 

0.2 - 

0.1 - 

I I I I I I I I 1 

0 0.01 0.02 0.03 0.01 0.05 0.06 0.07 0.08 0.09 1.00 

ROTATION RATE (RADISEC) 

Figure H-7. Ullage  fraction  versus  rotation  rate. 
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